If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-14=0
a = 2; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·2·(-14)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*2}=\frac{0-4\sqrt{7}}{4} =-\frac{4\sqrt{7}}{4} =-\sqrt{7} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*2}=\frac{0+4\sqrt{7}}{4} =\frac{4\sqrt{7}}{4} =\sqrt{7} $
| 3(q−7)=2 | | 365+65x=-832 | | x/8-7=11/16 | | 8x+24=3X3+59 | | 8x+6x+5=47 | | 5x-4+4x=-9+9x+5 | | 7x+13=7+6x | | 26x+4+72=180 | | 4^x=3/2x+6 | | -8x+12=8x+-52 | | -3=n÷5 | | 1.259=1.04^x | | 10x+(-1)=3 | | 8x-(-10x)=90 | | 7^x=243 | | 8(x-6)+6=7x-3 | | 3x-(-8x)+11=88 | | 5d(-1/2)(2d-4)=(-5/4)(d+4) | | 8=y=3 | | 7(x-7)+26=7x-22 | | 4x-0.5x-7=0 | | 8)7x-2)=96 | | 4x=3/2x+4 | | -5.9=-1.1+v/3 | | 3x2+3x-6=0 | | -7x-7=13 | | -6−3q=-2q | | 9(x-6)+42=9x-12 | | -4x-13=6x-(93) | | 36=-3(22-z)+3(z-4) | | -10x-12=8x+-28 | | x-9=-4x-1 |